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The flow structures giving rise to the force on a circular cylinder in uniform, circular, 
orbital flows have been investigated for Keulegan-Carpenter numbers (K)  less than 
2 and a Stokes parameter (p) of 483 using the random-vortex method. Comparisons 
with analysis using the method of inner and outer expansions are made and good 
agreement is found for K = 0.1. For higher K-values, the viscous force (the difference 
between the total force and the potential-flow force) acts mainly in opposition to the 
potential-flow force causing a substantial reduction in total force, in keeping with 
experimental measurements. Significant separation does not occur at  K < 1.5 and 
vorticity organizes itself asymmetrically about the line through the cylinder centre 
parallel to the incident velocity vector. Vorticity of one sense of rotation remains 
close to  the half-surface lagging the velocity vector, while an area of vorticity of the 
opposite sense wraps itself around the cylinder. The net circulation in the flow (the 
circulation within a path encircling the cylinder at  a large radius) is zero. Vortex 
shedding occurs at  K > 1.5. Viscous forces due to non-uniform, orbital flows around 
a horizontal cylinder beneath waves were similar although vortex shedding tended 
to occur a t  lower K-values. 

1. Introduction 
Uniform orbital flow is defined here as one where the motion of fluid elements 

describe closed paths. Such a flow around a circular cylinder may be characterized 
by the Keulegan-Carpenter number, K, the Stokes parameter, /3, and the geometry 
of the particle path in the onset flow (circular or elliptical in this study) : 

K = UT/2a 

and /3 = 4a2/vT, 

where U is the amplitude of the horizontal component of onset velocity, T is the 
orbital period, a is the cylinder radius and v is the kinematic viscosity. Here, we limit 
ourselves to K-values below 2 ,  for which vortex shedding is not, in the main, a 
significant effect. 

The practical concern in the field of offshore engineering is to understand the flow 
mechanisms which generate viscous forces on a horizontal cylinder under regular 
waves, where the cylinder axis is parallel to the wave crests and submerged at a 
depth great enough not to modify the surface wave form. Under waves, the orbital 
flow is non-uniform and may be defined by two non-dimensional parameters in 
addition to K and /3, provided linear wave theory is valid : the ratio of the depth of 
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the cylinder centre beneath mean water level to  the cylinder radius, and the depth 
parameter (2n x water depth/wavelength). Comparisons with uniform orbital flow, 
having the same onset velocities a t  the cylinder centre, will be made. 

In linear, oscillatory, onset flow at K below about 2, the force on a circular cylinder 
is close to the potential flow, inertia force for a wide range of ,&values spanning 
laminar and turbulent conditions ; the viscous force is relatively small and, in laminar 
conditions, is predicted reasonably by the analyses of Stokes (1951) and Wang 
(1968), see, for example, Bearman et al. (1985) and Sarpkaya (1986). The vorticity 
structures associated with laminar flow have recently been investigated com- 
putationally by Smith & Stansby (1991). Experimental measurements of the force on 
a horizontal cylinder under deep-water waves (at p-values where turbulent or 
transitional flow would be expected) have, on the other hand, shown that the force 
is substantially modified from the potential-flow force for the same range of K-values 
(Chaplin 1984b). The inertia coefficient for total force, defined in the conventional 
way, decreases as K increases, indicating that a component of the viscous force acts 
in opposition to the potential-flow force. However, for laminar conditions, the 
analysis of Riley (1971) for uniform, circular, orbital flow predicts a viscous force 
component in the direction of the potential-flow force, giving an increased inertia 
coefficient for total force. I n  this analysis (and that of Wang) the flow is divided into 
an inner boundary-layer region and an outer region, with separate expansions of the 
stream function which match asymptotically. Steady streaming is predicted and this 
drift of fluid elements around the surface, with the same sense of rotation as the onset 
orbital flow, has also been observed in the experiments with waves (Chaplin 1984~) .  
Chaplin (1984 b)  has postulated that the ‘ bound circulation ’ associated with the 
steady streaming in Riley’s analysis gives rise to a force proportional to V .  Since the 
terms in the expansions from this analysis do not extend to  this order, steady 
streaming makes no contribution to the forces derived. The force vector associated 
with a bound circulation would lag the velocity vector by in and act in opposition 
to the potential-flow force, since the acceleration vector leads the velocity vector by 
in (see the definition sketch in figure 1) .  Chaplin (1984b) has thus inferred that the 
reduction in the inertia coefficient for total force with increasing K is associated with 
this bound circulation. Clearly the situation is rather different from that with linear, 
oscillatory, onset flow. 

To improve understanding of the flow structures generating the viscous forces, we 
solve the starting-flow problem numerically using the random-vortex method for 
two-dimensional, laminar flow. At zero time there is no vorticity in the flow and, in 
general, the time-stepping computation is continued until steady periodic motion at 
least appears to have been reached. I n  this way the evolution of the flow structures 
may be observed. With this method, point vortices are generated around the surface 
at  each time step to  satisfy the zero-slip condition and maintain a constant 
circulation thereafter. Vortices are convected by the vortex-in-cell method and 
diffusion is simulated using random walks a t  each time step. The local rate of 
generation of circulation on the surface may be shown to be proportional to  the 
tangential pressure gradient, requiring the rate of generation of circulation around 
a complete surface to be zero. The net circulation in the flow is thus zero. Since this 
result is particularly relevant to this problem its derivation will be given in full in this 
paper. The net circulation in the flow has also been shown to be zero through purely 
kinematical considerations (Milne-Thomson 1968). 

The transport of vortical regions is a vital aspect of this flow and it can be 
represented accurately by the random-vortex method, avoiding some of the 
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FIGURE 1.  Definition sketch, showing the viscous force vector shear force vector A, velocity 
vector u, acceleration li and relative phase angles 4 and q5s. The velocity vector lags the acceleration 
vector by +IT only when the orbital flow is circular. 

numerical diffusion and dissipation problems associated with Eulerian, finite- 
difference schemes. The method thus appears to be well suited to this problem. The 
formulation used here is the same as that in Smith & Stansby (1988, 1989), with 
different boundary conditions for the onset flow. 

A direct comparison with experimental data is, however, not possible since the 
minimum p-value in the experiments was 7600 and these orbital flows will almost 
certainly be three-dimensional and turbulent for most of the K-range. Since our 
numerical solution requires two-dimensional, laminar flow, we set /3 = 483, a 
situation which has been investigated experimentally for linear, oscillatory, onset flow 
(Bearman et al. 1985). With K < 1.5, flows have been found to be two-dimensional. 
Some results with /3 = 100 have also been computed. As direct, three-dimensional 
simulation is not yet achievable, we are limited to such an indirect route to  improve 
understanding of flows which are difficult to analyse through physical experiment. 

We are concerned here with viscous forces. The viscous force is considered in 
relation to the incident velocity vector and the component due to shear stress is an 
output as well as the total viscous force. Streamline plots with superimposed areas 
of vorticity of different rotation are produced at regular time intervals. 

2. Theory 
The theory and numerical formulation for the random-vortex method have been 

given in Smith & Stansby (1988, 1989) and only an outline will be given here. In two 
dimensions, viscous flow of an incompressible fluid with constant kinematic viscosity 
is described by two coupled partial differential equations : the vorticity equation 

aw 
- = -((U-V)w+vV2w, 
at 
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V’U = -W A (wk) ,  

where w is the magnitude of vorticity, u is the velocity, t is time and k is a unit vector 
normal to the plane of the flow. Equation ( 1 )  is solved by the operator-splitting 
scheme of Chorin (1973). The equation is separated into the nonlinear Euler equation 

Elc = - ( u . V ) w  

and the linear diffusion equation 

ElD = vvzw.  

(3) 

(4) 

The processes of convection and diffusion are denoted by the suffices C and D 
respectively. The time-stepping procedure by which these equations are t o  be solved 
is the random-vortex method. The vorticity field is represented by a field of point 
vortices. New vortices are created around the cylinder surface a t  each time step. A 
circulation is associated with each new vortex such that the zero-slip condition is 
satisfied. Equation (3) is solved by convecting vortex particles in their mutually 
induced velocity field, obtained from (2) by the vortex-in-cell method, using a 
radially expanding polar mesh. Equation (4) is solved by superimposing normally 
distributed random walks onto the positions of the vortex particles. 

In  order to maintain the zero-slip condition throughout one time step, vortex 
particles which are carried across the surface by the random walk may be reflected 
back to their mirror-image positions (Chorin 1978). Alternatively these particles may 
be ‘absorbed’ and the circulation carried by the newly created vortices adjusted so 
that the zero-slip generation condition is still satisfied (Smith & Sttansby 1989). This 
has the advantage of substantially reducing the number of vortices which are needed 
for convergence of flow properties. 

The kinematics on the outer boundary of the vortex-in-cell mesh are imposed using 
either linear wave theory or a uniform orbital flow. Varying the position of this 
boundary from 20 to 40 radii from the cylinder centre had negligible effect on the 
results computed. 

3. Surface conditions and net circulation 
In  Smith & Stansby (1988) the relation between surface pressure and the 

circulation carried by vortices generated on the surface was stated, following the 
derivation given in Smith (1986). This is now given in a concise form. 

Close to the surface of the cylinder, convective transport may be neglected, so that 
transport of vorticity is described by the diffusion equation (4) with awla t  x [aw/at],. 
This can be rewritten in terms of vorticity flux vector y as 

aw _ -  - -v*y, 
at (5)  

where y = - vww.  (6) 

The surface is divided into N small elements of arclength A0 (A0 = 2 n / N ) .  We denote 
the radial component of y a t  a point on the cylinder surface situated within the ith 
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surface element by ( l / a  AO) a(Ari ) /a t .  Thus a(Ari ) /a t  approximates the rate a t  
which circulation crosses the surface element : 

a 
at 
- ( A r i )  = - va AO- (7)  

Transport of momentum is described by the Navier-Stokes equations. Again 
neglecting convective transport close to the cylinder surface, we obtain 

3 = vv2u 
P 

= V[v(v*U)-v A (v A U)]; 

w E -V A u and, in incompressible flow, Veu = 0. Hence 

= Vv A a. 
P 

(9) 

Integrating the tangential component of (9) along the ith surface element, we obtain 

where Api is the pressure change along the element. From (7) and (10) 

a 
AP6 = Pz 

We define Wi by 
a 
at 

8ri = - ( A r , )  At ; 

Sri then represents the circulation carried by vortices crossing the i th surface 
element in a time increment At. The pressure p ,  a t  0 = iAO, relative to  a reference 
pressure p ,  a t  8 = 0, is given by 

Since the surface pressure can contain no discontinuities, p N  = p ,  and 
N c sri = 0. 

3-1 

Thus the sum of the circulation is carried by vortices crossing the cylinder surface, 
and the net circulation remains zero, which is consistent with the kinematical result 
given in Milne-Thomson (1968, $21.81). 

The torque t ,  on the cylinder, which is due only to the surface shear stress 7, = pw,, 
is given by 

t ,  = a2 7,dO f 
f = a2p w , d 8  (15) 

and is in general non-zero. (Here $ denotes integration around the cylinder surface). 
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4. Forces from Riley’s analysis 
The forces and torque resulting from the analysis of Riley (1971) for uniform, 

circular, orbital flow are given below, taking terms to O ( @ ) ,  and have been given in 
a different form by Chaplin (1984b). 

The shear force& and the viscous component of pressure force fp lead the velocity 
vector by in and have equal magnitudes : 

fs = fp = 2xa2pUw - , (E)i 
where w is the angular orbital frequency and R is the Reynolds number (=  PK). 

Dividing by p a V  gives the non-dimensional force magnitude 

With p = 483 

and total force 

Fs = Fp = 0.7166/K 

F = 1.4332/K. 

Torque is divided by pa2V and has a non-dimensional magnitude 

With p = 483, Tp = 0.3226. 

5. Results 
We first consider the most idealized case of uniform, circular, orbital flow in detail. 

The sketch in figure 1 defines the force notation. We are concerned only with the 
viscous force, and in uniform orbital flow this may be obtained by subtracting 2pna2 
du/dt from the total force vector. The force F, due to shear stress is also output 
(and is part of the total viscous force F). 

The numerical parameters used in the computations are such that the forces, time- 
averaged over one cycle, are independent of further refinement of these parameters. 
Variations of force magnitude with time are shown in figure 2. The noise is due to the 
random walk used for simulating diffusion, and decreases as the number of vortices 
introduced is increased. Many cycles are computed (up to 20) and a periodic state 
appears to have been reached for K < 1.5 although not for K = 2. Around 100000 
vortices are generated. The computer code automatically vectorizes on the Amdahl 
VP1200 and runs take up to  40 minutes CPU time. The shear force magnitude 
becomes steady much more quickly than that of the total viscous force. The time 
variations of the angle of the force vector relative to the onset velocity vector are 
shown in figure 3 and also reach a steady state quickly. Table 1 shows total viscous 
and shear force magnitudes and angles, averaged over the last five cycles computed, 
together with values from Riley’s analysis. For K = 0.1, force magnitudes and angles 
are in close agreement with the theoretical analysis. Values of torque are also shown 
in table 1 .  Torque is a relatively small quantity and, for K = 0.1, figure 4 shows that 
the random noise is significant in relation to  its mean value. For K = 0.5, the shear 
force magnitude and angle remain in close agreement with Riley‘s analysis, while the 
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FIGURE 2. Variation of non-dimensional, viscous force magnitude F and shear force magnitude 
F, with time in cycles, t /T ,  for K = 0.1, 0.5, 1 ,  1.5 and 2, with uniform, circular, onset flow. 

total viscous force is approximately in the direction of the velocity vector. For 
K = 1, 1.5 and 2, the angle of the shear force remains close to that of Riley's analysis 
while its magnitude becomes increasingly less as K increases. The total viscous force is 
now predominantly in opposition to the acceleration vector, causing the reduction in 
the conventional inertia coefficient. With K = 2, a steady total viscous force 
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magnitude has clearly not been reached ; vortex shedding is occurring and the flow 
structures are complex and unrepetitive. In view of this, the roughly constant angles 
for total viscous and shear force are perhaps surprising. 

The flow structures for K < 1.5 are attached. Small ‘separation bubbles’ do occur 
with K = 1.5 and appear to produce the oscillations in the force and angle shown in 
figures 2 and 3. The term ‘separation bubble’ here indicates a region where the 
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FIQWRE 4. Variation of torque, T,, with time in cycles, t /T ,  for K = 0.1 and 1, with uniform, 

circular, orbital, onset flow. 

Half-cycles 
K F F, f 4: T, for averaging 

0.1 14.87 7.22 - 44 - 43 0.28 11-18 
(14.34) (7.17) (-45) (-45) (0.32) 

0.5 2.20 1.40 -3 - 43 41-50 
(2.87) (1.43) (-45) (-45) 

1 .o 3.68 0.58 76 - 42 0.24 41-50 
(1.42) (0.72) (-45) (-45) (0.32) 

1.5 5.50 0.29 85 - 39 3140 

2.0 5.20 0.19 86 - 42 1&19 

TABLE 1. For uniform, circular, orbital, onset flow: averaged total viscous and shear force 
magnitude, F and F,; angle relative to the onset velocity vector, 4 and q5s; and torque, T,, including, 
in parentheses, values from the analysis of Riley (1971). 

(0.95) (0.48) (-45) (-45) 

(0.72) (0.36) (-45) ( -  45) 

surface streamline leaves the surface (bifurcates) and reattaches downstream to form 
a small ‘bubble’. Examples are shown on the streamline plots close to the cylinder 
surface in figure 5 which indicates the intermittent nature of the bubbles. While 
separation in unsteady flow is not a well-defined phenomenon, these ‘bubbles’ have 
the appearance of separation bubbles associated with steady flow. Figures 6 and 7 
(plates 1 and 2) show streamline and vorticity contours a t  various times for K = 0.5 
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FIGURE 5. Streamline contours close to the cylinder surface in uniform, circular, onset flow with 
K = 1.5 at values of tlT shown by the number in the circle. The arrow indicates the onset flow 
direction. 

and 1.5. Early and later times are shown to illustrate the initial development and the 
final structures. Vorticity contours enclose areas occupied by vorticity of clockwise 
and anticlockwise rotation, coloured green and red respectively. The magnitude on 
the contours a t  a given time is set arbitrarily to 10% of the average modulus of 
vorticity on the surface. It would appear that the small structures which eventually 
develop are a feature of the numerical method. Although they may resemble a 
transition phenomenon they occur a t  low Reynolds numbers when this would not be 
expected. In  all cases, the centreline streamline is diverted around the cylinder in the 
direction of the orbital rotation, indicating that the tangential velocity near the 
cylinder has a phase lead over the outer flow velocity which is consistent with Stokes’ 
oscillatory boundary-layer solution. For K = 0.1 (not shown), the vortical areas of 
each sense of rotation have a roughly similar shape. For K = 0.5, figure 6 shows that 
vorticity of one sense of rotation on the cylinder half-surface lagging the velocity 
vector remains close to the surface, while vorticity of opposite rotation wraps around 
the cylinder and outside the vorticity of opposite signed rotation. This effect is much 
more pronounced with K = 1.5, as shown in figure 7. On the lagging half-surface the 
outer vorticity reinforces the potential-flow velocity as the surface is approached. 
The no-slip condition generates the intense, oppositely signed vorticity close to the 
surface. The vorticity on the other side is weaker and the velocities smaller. In this 
way, the attached flow generates a force in opposition to the acceleration vector, 
while zero net circulation is maintained in the flow. 

We now consider the total circulation r within a radial distance d of the cylinder 
centre. The non-dimensional circulation r / a U ,  averaged over the last five cycles 
computed, is plotted against / / a -  1 in figure 8 for different values of K .  The curves 
show the maximum circulation occurring a t  a radius which increases as K increases ; 
their form may be related to the vorticity structures which have been described. 

For the horizontal cylinder beneath waves, we consider case A in Chaplin (1984b), 
where the cylinder axis is 5 radii below mean water level, the depth parameter is 2.28 
and linear wave theory is considered valid. The corresponding uniform, orbital flow 
is constructed by applying the onset velocities at the cylinder centre to  the entire 
flow field. This gives an elliptical particle path with a ratio of horizontal to vertical 
axes of 1.094: 1.  To produce almost circular orbits, the depth parameter was 
increased to 10.0. We have thus considered four situations for 0 < K < 2 and 
p = 483. In  order of increasing complexity, these are: 

I.  Uniform, orbital flow with a circular, orbital path. 
11. Uniform, orbital flow with an elliptical particle path with an axis ratio of 

1.094: 1 .  
111. Waves with a depth parameter of 10.0 
IV. Waves with a depth parameter of 2.28. 
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FIGURE 6. Streamline and vorticity contours for uniform, circular, onset flow with K=OS at various t /T,  
shown by the number in the cylinder. The arrow on the streamline shows the onset flow direction. The green 
area shows vorticity of clockwise rotation, the red area vorticity of anticlockwise rotation. 

STANSBY & SMITH (Facing p. 168) 
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FIGURE 7 .  Streamline and vorticity contours for uniform, circular, onset flow with K= 1.5, 
notation as figure 6 .  

STANSBY & SMITH 
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FIGURE 8. Variation of circulation r / U a  within a radial distance r' with (r'la - 1)  for K = 0.1,0.5, 
1 ,  1.5 and 2, averaged over the last five cycles computed, for uniform, circular, onset flow. 

Orbital Uniform Flow 

I I1 I11 IV 

Orbital Wave Flow 

K P F  F V  F 4 O  F 
0.5 2.2 -3 2.1 -8  2.1 - 1  2.0 -5 
1 .o 3.7 76 3.2 73 4.3 79 3.7 79 
1.5 5.5 85 4.8 83 5.3 83 4.6 84 
2.0 5.2* 86 5.4 86 2.6 33 2.5 41 

TABLE 2. Viscous force magnitude F and angle q5 relative to the onset velocity vector for situations 
I, 11, 111 and IV, averaged over the last five cycles computed. (* Indicates steady state not 
reached. ) 

In  waves, the calculation of potential-flow force must take account of non-uniform 
effects, e.g. Ogilvie (1963), in order to give the correct viscous force. These are 
particularly significant a t  the smaller K-values. 

Viscous force variations for situations I ,  11, 111 and IV generally have a similar 
form and values of force magnitudes, and angles averaged over the last five cycles 
computed are given in table 2. It can be seen that there is a small influence of slight 
ellipticity and non-uniformity on force magnitude and angle for K < 1.5, while for 
K = 2 force magnitude and angle are quite different in uniform and wave flows. For 
the former, vortex shedding occurs with K = 2 while, for the latter, vortex shedding 
has started at the smaller value of K = 1.5. 

The conventional inertia coefficient C ,  is related to the viscous force magnitude F 
and angle 4 by 

C ,  = 2-KFsinq5/n2, 

where the overbar indicates the time mean. Results from computations for situations 
I,II,III and IV are shown in figure 9, together with Case A of Chaplin with /3 = 7600. 
Results from c' ..-nputations for situation I with /3 = 100 were similar to those with 
/3 = 483 and in slightly closer agreement with the experiment a t  /3 = 7600. 
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6. Discussion and conclusions 
It is interesting to  compare results for uniform, orbital, onset flows with those for 

linear, oscillatory, onset flows, which have received much attention. In both cases, 
vortex shedding occurs for K > 2 and the flows are attached for K < 1.5. However, 
with orbital onset flows, Riley's analysis only gives a good viscous force prediction 
for very small K-values, e.g. 0.1 but not 0.5, while, for the linear case, Wang's 
analysis, using a similar technique, gives a reasonable prediction for K < 2. It should 
be mentioned that Wang's analysis includes terms up to O ( @ ) ,  giving virtual 
identical forces to Stokes' analysis which includes terms up to O ( p ' ) .  For orbital 
flow, the inclusion of terms of O ( P ' )  in Riley's analysis reduces the viscous force 
magnitude by 1.3% and changes the phase by less than 1' (J. R. Chaplin, private 
communication). Although these higher-order terms in p produce only marginal 
changes, it is possible that, in the orbital case, theoretical analysis taken to 
arbitrarily high order in K and /? would produce better force prediction. 

The vorticity structures are quite different in the two situations, as might be 
expected. I n  linear, oscillatory flow, attached, periodic systems comprising pairs of 
weak vorticity regions are generated (Smith & Stansby 1991). The surface streamline 
bifurcates for a proportion of a half-cycle which decreases as K decreases. I n  orbital 
flows, such bifurcation was not apparent for K < 1 and only small 'separation 
bubbles ' appeared with K = 1.5. For 0.5 < K < 1.5, vorticity of one sense of rotation 
wraps itself all around the cylinder, outside a concentrated region of vorticity of 
oppositely signed rotation close to  the half-surface of the cylinder lagging the onset 
velocity vector. This causes a viscous force in opposition to the acceleration vector, 
which results in the reduction in overall inertia coefficient. This reduction thus does 
not result from the concept of bound circulation associated with Riley's analysis. The 
computations require a large number of cycles to develop to an apparently periodic 
state and, since vorticity of one sense of rotation continues to wrap itself around the 
cylinder while diffusing away from the cylinder, it  cannot be certain that the overall 
structures will maintain themselves indefinitely. 

The numerical study has concentrated on the idealized case of uniform, circular 
orbital flows since it was shown that corresponding non-uniform orbital flows under 
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waves produced similar results, although separation and vortex shedding occurred at 
slightly lower K-values. 

The original motivation for this study was provided by the results of experiments 
in waves which showed that the variation of C, with K (for K < 2) was quite different 
from that for linear, oscillatory, onset flow. The /?-values in the experiments were 
much higher than those used in the computations, which are limited to  two- 
dimensional, laminar conditions. The experimental flows were almost certainly 
three-dimensional and turbulent but the variation of C, with K has a similar form 
to the computed results, suggesting that the underlying flow phenomena are similar 
in the two cases. 

The authors would like to acknowledge several useful discussions with Professor 
Chaplin. This work formed part of the research programme of the Marine Technology 
Directorate’s Fluid Loading Programme, a programme of research jointly funded by 
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